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Overview 
 
The non-condensable gas model is built upon the two-fluid, liquid/vapor phase change 
model and includes the effects of a non-condensable gas present in the vapor space. The 
new model is designed to work only with the two-fluid phase change model because the 
spatial distribution of vapor and gas components is needed to predict the phase change 
behavior. By contrast, the one-fluid phase change model assumes spatially uniform 
pressure and temperature throughout the gas phase. The assumption of a uniform 
gas/vapor concentration in a two-component gas would rarely be valid. This model is the 
basis of work completed to simulate the ullage space of cryogenic tanks2, but it is 
applicable to any two-component gas problem. 
 
What was added to the liquid/vapor two-fluid phase change model? 
 
The liquid/vapor two-fluid phase change model assumes that gas phase regions are:  
 

1) composed entirely of the vapor of the liquid phase and could therefore 
condense completely into the liquid phase  

2)  the total gas pressure always tries to equilibrate to the saturation pressure of 
the liquid.  

 
Addition of non-condensable gas requires:  
 

1) the solution for an additional transported quantity that tracks the  concentration 
of the non-condensable gas,  

2) modifications to the pressure iteration schemes to account for a non-uniform 
gas constant,  

3) changes to the energy equation due to a non-uniform heat capacity, 
4) alterations to the phase change routine to account for the partial pressure of the 

vapor (which is the total gas pressure in the liquid/vapor model).  
 
The model does not account for variations of viscosity or thermal conductivity of the gas 
phase because changes of these properties are considered insignificant for most vapor-gas 
systems. 
 
Assumptions 
 
The new model assumes that the vapor-gas mixtures can mix in any proportion. The ideal 
gas assumption holds for all temperatures and pressures encountered in the vapor-gas 



phase (as is used for all gas regions in FLOW-3D). Because typically the flow dynamics 
cannot be predicted at the small scales at the gas-liquid, the phase change mass flux is 
approximated as a linear function of the difference between the saturation pressure of the 
vapor and its local partial pressure. The proportionality constant contains an 
accommodation coefficient and is also a function of temperature – higher temperatures 
slow mass transfer because of the greater distance between gas molecules. 
Quantification of the non-condensable gas component 
 
The goal of this work is to include the effect of a non-condensable gas within a gas/vapor 
region. In order to add the effects of a non-condensable component, an additional 
quantity (which is transported with the gas flow) must be computed to represent the 
amount of non-condensable gas present. The quantity chosen is ρnc, which represents the 
microscopic density of non-condensable gas within each computational cell. Because it is 
a microscopic quantity, the value of ρnc does not vary due to the available volume in each 
cell. The resulting transport equation for ρnc is: 
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Here v is the local fluid velocity and Dnc is the diffusion coefficient of the non-
condensable gas within the vapor mixture. Note that this equation (and others in this 
note) is simplified as it does not include FLOW-3D’s VOF and FAVORTM functions. 
Because the non-condensable component does not evaporate or condense, the total 
quantity within the vapor bubble is constant unless there is a source or sink present or 
there is flow from an adjacent mesh boundary. 
 
Details of the model 
 
In the liquid/vapor two-fluid phase change model3, the mass transfer rate is computed 
based on the difference between the local saturation pressure of the liquid, , and the 
vapor pressure. With the addition of the non-condensable gas, the partial pressure of the 
vapor, Pvap, is used to compute the mass transfer rate at fluid interfaces: 
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Here C is the accommodation coefficient (called rsize in the FLOW-3D input file),  is 
the gas constant of the vapor, T is the local temperature, Pvap is the local vapor pressure, 
and  is the saturation pressure of the liquid corresponding to the local temperature, 
derived from the Clausius-Clapeyron equation
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Here (Pc, Tc) is a point on the saturation curve and TEXP is a fitting parameter, typically 
equal to 
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where γ is the ratio of the heat capacity of the vapor at constant pressure to its heat 
capacity at constant volume (cv

vap), and ΔHv is its latent heat of vaporization. 
 
Pvap in Equation (2) is computed based on the vapor density within the computational 
cell. First, we need to compute the gas density in the computational cell. In FLOW-3D, 
we store the macroscopic density of the fluid mixture, ρ (i.e., the average density of all 
fluid components in the cell). We know if the density of the liquid phase is ρliq, then the 
density of the gas mixture in the remainder of the cell (if there is gas phase in the cell) is: 
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Here f is the updated volume fraction of liquid in the cell. Note that Equation (5) is valid 
only for values of f<1; cells that contain no gaseous phase are not considered in the phase 
change model. The total gas density is the sum of the vapor and non-condensable gas 
densities: 
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where ρvap is the density of the vapor portion of the gas phase. The vapor pressure in the 
gas phase is then computed from the ideal gas law: 
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Likewise, the partial pressure of the non-condensable gas is 
 
  (8) TRP ncncnc ρ=
 
where  is the gas constant of the non-condensable gas. Also, by the definition of 
partial pressures for a two-component system, 
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Solving Equations (6) to (9) yields the microscopic densities and partial pressures of the 
two gas components.  
 



It is important to distinguish between microscopic and macroscopic densities. The 
microscopic density is a quantity that represents the actual physical density of the gas or 
liquid, regardless of the volume of the computational cell. In contrast, the macroscopic 
density represents the quantity of material if it were to be spread out over the entire open 
volume of the computational cell. Therefore, for cells away from the liquid-gas interface, 
the microscopic and macroscopic densities are one and the same. At the liquid-gas 
interface, the relationships between micro and macroscopic densities are 
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where liqρ  is the macroscopic liquid density, gρ  is the macroscopic gas density and f is 
the volume fraction of the computational cell occupied by liquid. 
 
During the solution of the compressible flow, the gas density ρg is computed from the 
differential form: 
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However, to ensure a stable numerical coupling between velocities and pressures during 
the computation, especially in the limit of incompressibility, it is sufficient to use a 
simpler approximation when evaluating the time-advanced velocities: 
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During the iterative numerical solution of Equation (12), the pressure and velocity 
components in every computational cell are updated until Equation (12) is satisfied to a 
specified convergence criterion. The gas density ρg is treated as a function of pressure, 
with the first term of Equation (11) approximated by 
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where, by the ideal gas law 
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and Pi is the locally computed pressure at the ith iteration, R  is the mean gas constant of 
the vapor-gas mixture, and Tn is the local temperature computed during the previous 
computational cycle. 
 



The value R  in Equation (14) depends on the relative concentrations of the vapor and 
non-condensable gas. The values of both ρnc and ρg are taken from the previous 
computational cycle and, therefore, are known, and ρvap is calculated from Equations (6-
9). Then R  is computed as: 
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where  is the gas mixture density computed during the previous computational cycle. 
At this point, the total pressure P has been computed from the iterative solution to 
Equations (12) through (14). Upon convergence, a more accurate value of ρg is obtained 
from Equation (11). This represents the gas mixture density in a computational cell. 
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Now, in a separate step, we compute the temperature of the gas mixture including the 
phase change; this is also calculated iteratively because of the sensitivity of the 
condensation/evaporation rate to the local temperature and pressure of the gas-liquid 
mixture. The liquid-gas mixture temperature T is updated within each iteration. The goal 
is to predict the change in temperature due to phase change, which is 
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Here f is the liquid fraction within the computational cell, ρliq is the microscopic liquid 
density at the start of the iterations (a constant), and j

liqρ  is the updated macroscopic 
liquid density at iteration j, computed to account for the changing amount of liquid 
present in the computational cell. As evaporation or condensation occurs, j

liqρ  goes down 
or up, respectively, and the rate of this change is computed by Equation (2). Equations (2) 
through (8) are computed iteratively until a converged value of  is reached (i.e., the 
change from one iteration to the next is below 10-6*ρliq). 
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Additionally, the calculation of the temperature from thermal energy is affected by the 
non-condensable component; the effective heat capacity of the gas mixture is 
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Test problem 
 
The test problem is a simple enclosure containing water, steam and air, whose walls are 
all adiabatic (no heat or mass flux) except for the bottom, in which a heating element is 
embedded. Figure 1 shows the computational domain. It is solved as a two-dimensional 



problem, with only one cell into the page, and 45 cells in each of the other two directions 
(totaling 2025 computational cells). The simulation was run for a total of 1800 s: 1800s. 
During the first 600 s, the heater output is maintained constant at 1,000 W/m, thereafter, 
the heater is shut off. The initial temperature of the entire system is 323 K (50°C), the 
initial pressure is 1 atm, and the initial volume fraction of the non-condensable gas is 
0.8847, which corresponds to a vapor pressure of 11.68 kPa, or 100% relative humidity. 
The physical properties used for the fluids are shown in Table 1. 
 

Adiabatic walls

Water

Air/steam (gas) mixture 

2.5 cm 

Heater output 1,000 W/m 

10 cm 

10 cm 

 
Figure 1: Test problem setup: a two-dimensional container with a heat source. 
 
 
Heat capacity, water  4182.0  J/(kg·K) 
Heat capacity, steam  2030.0  J/(kg·K) 
Heat capacity, air  718.0  J/(kg·K) 
Heat of vaporization  2260.0  kJ/kg 
Gas constant, steam  461.5  J/(kg·K) 
Gas constant, air  286.69 J/(kg·K) 
Density, water  1000.0  kg/m3 
Thermal expansion coefficient, water  0.0018 K-1 
Viscosity of water  1.0  mPa·s 
Viscosity of steam/air mixture  0.1781 mPa·s 
Pc  1.013×105 Pa 
Tc  373.0  K 
TEXP  1.92×10-4 K-1 
Accommodation coefficient  1.0 
 
Table 1: Material property data used in the simulation. 
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Figure 2: Plot of temperature versus time, showing a comparison of the FLOW-3D simulation 
result in the domain center (purple line) and the result from an analytical calculation, based on the 
assumption of equilibrium throughout the container. 
 
 

 
 
Figure 3: Temperature profile in the domain at t=600 s, the moment when the heating element is 
shut off. The temperature variations in the gas phase are due to natural convection caused by the 
differing density between steam and air. 
 
Figure 2 shows simulation results for the temperature in the gas phase at the center of the 
container. The analytical result shown is based on a computational assumption of 
equilibrium at all times during the simulation, i.e., the water temperature is taken to be 
uniform and the gas region is in equilibrium with the water. Therefore, the vapor pressure 
of steam in the gas region is always equal to the saturation pressure of water at the 
current temperature. Note that the temperature locally does deviate from the equilibrium 
result: this is to be expected as the system is not truly at equilibrium during the heating 
phase and only approaches equilibrium after long times of no heat input. What is also 
interesting is that the gas temperature, although initially below the equilibrium value, 
rises above it due to compression heating as gas pressure rises with temperature. Figure 3 
shows a snapshot of the temperature profile in the container at 600 s (exactly when the 



heating element is shut off). The oscillations in the temperature seen in Figure 2 are due 
to the physical instabilities in an inversely stratified medium that develop when lower 
density gas exists below heavier gas. 
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Figure 4: Plot of vapor pressure versus time, showing a comparison of the FLOW-3D simulation 
result in the domain center (purple line) and the result from an analytical calculation, based on the 
assumption of equilibrium throughout the container. 
 

 
 
Figure 5: Vapor pressure profile in the domain at t=600 s, the moment when the heating element 
is shut off. Note that the steam rises non-uniformly in the gas phase because steam is less dense 
than air, even when it is cooler. 
 
Figure 4 shows the vapor pressure as a function of time, again at the center of the 
container. The FLOW-3D simulation result fluctuates due to the uneven natural 
convection of the vapor and remains below the analytical result. This is expected: just as 
with a physical system, the model is always trying to catch up to the equilibrium result, 
which is the difference between the actual conditions and the equilibrium condition that 
drives the evaporation. Thus, during the heating phase, one would always expect to see 
the vapor pressure lag behind the equilibrium value. Conversely, if an experiment was 



performed where cooling is occurring, the vapor pressure curve would always lie above 
the equilibrium result. At long times after the heating element is shut off, the vapor 
pressure does approach the equilibrium. Figure 5 shows the spatial distribution of vapor 
pressure at t=600 s. 
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Figure 6: Plot of total gas mass versus time, showing a comparison of the FLOW-3D simulation 
result in the domain center (purple line) and the result from an analytical calculation, based on the 
assumption of equilibrium throughout the container. 
 
Figure 6 shows the expected and simulated total mass of vapor in the container over time. 
This profile is very similar to that of Figure 4 except the result is much smoother because 
it is an integral quantity over the entire volume of the container. Again, as expected, the 
simulated result lags behind the analytical result, with the difference between the two 
curves the controlling the rate of evaporation. At long times, the equilibrium is 
approached and the evaporation rate asymptotes to zero. 
 
Remarks 
 
The non-condensable gas model is a powerful addition to FLOW-3D and enhances the 
breadth of multiphase problems that can be tackled. The combination of FLOW-3D’s 
Volume-of-Fluid (VOF), Fractional Area and Volume Representation (FAVORTM) and 
phase change models give FLOW-3D users unparalleled computational abilities to 
simulate highly dynamic gas/liquid multiphase systems. 
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