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1. Introduction 
 
An elastic membrane and wall model has been developed to provide a limited Fluid-
Structure Interaction (FSI) capability in FLOW-3D. In the model, deformation of an 
elastic membrane or an elastic wall impacts the adjacent fluid flow, while fluid pressure, 
in turn, affects the deformation. These interactions are described in the code in a fully 
coupled fashion.  
 
The main assumption of the model is that the deformations are small, i.e., the deflections 
are much smaller than the size of the deforming object (for elastic membranes) or the 
characteristic lengths of fluid flow and wall thickness (for elastic walls), allowing for a 
few useful simplifications. The geometries of membranes and elastic walls are assumed 
to be time-invariant, while the effects of their deformation on fluid flow are described 
with volume sources and sinks distributed along the fixed fluid-structure interface. With 
the further assumption that the pressure force is uniformly distributed on the membrane 
surface, analytical solutions rather than structural analysis algorithms are used to 
determine the membrane deformation.  
 
There are many potential applications for the model in microfluidic systems, e.g., 
chemical analysis systems, medical microdosage systems and inkjet devices. The model 
can be used to simulate flow in piezoelectric valveless pumps which convert membrane 
vibrations into a pumping action. The model can also be used to simulate droplet 
formation for piezoelectric inkjet printheads where a membrane or an elastic tube 
deforms under the force of a piezoelectric actuator to produce a droplet of ink.  
 
2. Elastic Membrane Deformation 
 
An elastic membrane is a rectangular or circular thin plate undergoing a small elastic 
deformation under external forces. Its thickness and material properties are assumed 
uniform. Its edge can be either simply supported or clamped. A simply supported edge is 
one having both zero deflection and zero net force moment. At a clamped edge, however, 
both deflection and its first order derivatives are zero, but the force moment is usually 
non-zero. In any case, the model requires that a membrane has only one of those two 
conditions present at all its edges. There is no restriction on the location of a membrane 
in the computational domain, but the membrane’s deforming surface must be 
perpendicular to the x, y, or z axis.  
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The model considers two external forces acting on a membrane: the hydraulic pressure 
force and the actuator force. The hydraulic force is obtained by the integration of pressure 
over both sides of the membrane and is then converted into a uniformly distributed force 
over the whole membrane. Users can prescribe the actuator force either as a sinusoidal or 
a piecewise linear function of time. In the model, the actuator is always assumed to be 
positioned coaxially on the membrane, and the contact area has the same shape (but not 
necessarily the same size) as the membrane. Because the actuator itself usually has much 
lower rigidity than the membrane, it is further assumed that the actuator force is 
uniformly distributed over the contact area. If a zero actuator contact area is given, then 
the actuator force is treated as a concentrated force at the membrane’s center.  
 
For a better computational efficiency, the analytical solutions rather than structural 
analysis algorithms are used to calculate the membrane’s deformation in response to the 
transient pressure and actuator forces. The inertia of the membrane is neglected, 
therefore, at any point in time the membrane is assumed to be at an equilibrium state 
defined by the balance of the hydraulic force, actuator force and the membrane’s rigidity. 
The analytical solutions are obtained by solving the equilibrium equation for a thin plate 
with small deformation, 
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where w is the deflection, f is the net external force per unit area on the membrane, and D 
is flexural rigidity, 
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where E is Young’s modulus, ν is Poisson’s ratio, and h is the membrane’s thickness.  
 
Consider a rectangular membrane with its surface perpendicular to the z axis. In a 
Cartesian coordinate system, Equation (1) is written as 
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For convenience, let the origin be placed at the membrane’s center, and a and b represent 
the membrane’s lengths in x and y directions, respectively. The boundary conditions for 
the membrane with the simply supported edges are  
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If the membrane has clamped edges, the boundary conditions are 
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For a circular membrane, it is convenient to write Equation (1) in a cylindrical coordinate 
system with its origin located at the membrane’s center and the z axis directed along the 
membrane’s symmetry axis, 
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With a denoting the membrane’s radius, the boundary condition for the simply supported 
edge is 
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For the clamped edge, the boundary condition is 
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All the analytical solutions for the membrane’s deflection used in the model satisfy the 
above equations. Some of these solutions are found in Timoshenko and Woinowsky-
Krieger (1959), while the others are derived from the existing solutions using the 
supposition method. Please refer to Appendix A for the full solutions.   
 
To account for the effects of the membrane motion on fluid flow, the continuity equation 
for fluid is modified with a volume source (or sink) term S added to its right-hand side, 
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where ρ is the fluid density, u is the fluid velocity and Af and Vf are the area and volume 
fractions, or porosity factors (FLOW-3D manual). In a mesh cell,  
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where Vcell is the total volume of the mesh cell, and Smb , n  and mbV  are the surface area, 
the unit outward normal and the velocity of the membrane surface in the mesh cell, 
respectively. 
 
The transport equation for the VOF function is modified by adding the source term S 
given by Equation (6), multiplied by the fractional volume of fluid in a cell, F,  
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Similar source terms are added to the energy and scalar transport equations. The transport 
equations for momentum and turbulence remain unchanged because they are used in their 
non-conservative forms. The non-conservative form of a transport equation is obtained by 
combining its conservative form with the continuity equation, in which case the source 
term cancels out.  
 
3. Elastic Wall Deformation 
 
An elastic wall in FLOW-3D is an object of an arbitrary shape. Its surface deformation is 
proportional to the pressure in the adjacent fluid, namely 
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where w is local deflection of the wall surface in the direction of outer normal, p is the 
local pressure, pref is the reference pressure, and K is the stiffness coefficient per unit 
area. Such kind of elastic deformation occurs if Poisson’s ratio for the wall material is 
zero, i.e., the normal stress causes no lateral strain. It is also a reasonable approximation 
when the normal deformation of the wall is very small, i.e. the lateral deformations will 
be negligible. With the lateral strain term neglected, Hooke’s law is reduced to  

 

E
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where ε  is the normal strain, σ is the normal stress, and E is Young’s modulus. Note that 
in the model, the pressure is the only force affecting the deformation. No actuator force is 
considered. Every point on the surface of the wall deforms in the direction of the local 
surface normal. 
 
K in Equation (8) is a user-prescribed parameter. To estimate its value, consider a plate 
with one side fixed and the other side under a normal force. Assume negligible Poisson’s 
ratio and a uniform normal stress on its surface σ. At equilibrium, the normal stress must 
have the same value σ everywhere inside the plate. Let h and w represent the plate’s 
thickness and deflection, respectively. The strain is then hw , and Hooke’s law in 
Equation (9) gives  
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Equation (10) indicates that
h
EK = . In general, K can be estimated as 
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where L is a characteristic depth of the elastic wall. It is noted that Equation (11) is only a 
rough estimate of K. Experimental measurement or a full structural analysis may be 
needed to obtain the accurate value of K.  
 
Effects of the elastic wall motion on fluid flow are described by adding a fluid source (or 
sink) at the wall surface, similar to the way it is done in the membrane model, as 
described in Section 2.  
 
 
4. Model Implementation 
 
The model allows for multiple elastic membrane and elastic wall objects, each 
characterized by its shape, size, orientation and material properties. A membrane or an 
elastic wall is created as a regular geometry component. For a membrane, the dimensions 
and shape of the component do not have to be exactly the same as those of the actual 
membrane. For example, the extents of the component can be made larger than the size of 
the membrane to overlap the surrounding components to prevent potential leaks of fluid. 
The thickness of the component can also be larger than the actual membrane thickness so 
it can be resolved by the computational grid. It is most commonly encountered that fluid 
exists only at one side of the membrane. In such cases, the user only need be concerned 
that the location of the fluid side of the component matches the actual membrane location 
because the geometry differences between the component and the membrane do not 
affect the computational result if the component is defined larger than the membrane. The 
actual shape and dimensions of a membrane are defined separately using additional input 
variables. Conversely, the geometry of an elastic wall is defined by its geometry 
component.  
 
The deflection coefficients are first calculated in each cell that contains a membrane or 
elastic wall surface. They are then used during simulation to calculate the deformations as 
functions of the applied total force in these cells. Deflection of a membrane is calculated 
with 
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where Fp and Fa are the total pressure force and the actuator force over the membrane. Fp 
is obtained by integrating the relative pressure )( refpp − over the whole open surface of 
the membrane. kp and ka in the equation are the deflection coefficients for pressure force 
and actuator force, respectively, and calculated using the equations in Appendix A. For 
the series expansions with infinite number of terms, only the first few terms of each 
expansion are considered. The number of these terms is determined through numerical 
tests for accuracy. In most cases, ten terms are sufficient to achieve a high accuracy. For 
an elastic wall, deflection in each solid boundary cell is calculated as 
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where kw is the deflection coefficient for the elastic wall. Note the deflection coefficients 
kp and ka vary from cell to cell but are time-independent. kw, however, is both location and 
time-independent.  
 
The model uses an implicit approximation to describe the coupling of the deflections to 
the pressure in the fluid. At each time step, the solution for the deflections and pressure is 
obtained iteratively using under-relaxation. The default value of the relaxation factor 
OMEGA is 1.0 for the membrane model and 0.7 for the elastic wall model. If 
convergence difficulties arise, the relaxation factor is automatically reduced to help 
achieve convergence or a smaller relaxation factor can be specified during problem setup. 
 
Due to the small deformation assumption, geometries of the membranes and elastic walls 
are fixed throughout the calculations, as defined by their initial setup. When 
computational results are displayed, deformations can be visualized by plotting the 
contours of the output variable deflection. Deflection of the membrane center versus time 
is available in the General History Data catalogue. The positive value of deflection is 
defined differently for a membrane and an elastic wall. The positive deflection of a 
membrane is in the positive direction of the coordinate axis which the membrane is 
perpendicular to. A positive wall deflection, however, corresponds to deformation in 
outward surface normal, i.e., into the fluid. The negative value of deflection is defined in 
the opposite direction correspondingly.  
 
Restrictions and limitations exist in the model. In addition to assumption of small 
deflections, elastic membranes and walls cannot be porous or moving objects. If a 
moving object collides with a membrane or an elastic wall, the latter is treated as a non-
moving rigid object, thus the impact affects only the motion of the moving object.  
 
5. Validation and application 
 
5.1. 3-D Piezo-acoustic inkjet device 
 
Consider a simple piezo-acoustic inkjet device consisting of a long tube with a nozzle at 
one end and an ink reservoir at the other. There are two piezoelectric actuators inserted 
into the wall of the tube, as shown in Figure 1. The inner diameter and the length of the 
tube are 0.044 cm and 0.58 cm, respectively. The pipe’s stiffness coefficient per unit area 
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is 1011 dyn/cm3. The ink has a density of 1.06 g/cm3 and a viscosity of 0.1 g/(cm⋅s). The 
reference and initial pressures are zero. Initially, the tube is full of ink at zero velocity. A 
voltage is then applied to each actuator to move the actuator away from the tube’s 
centerline, causing an enlargement of the tube in its middle region. After a short time, the 
voltage is turned off returning the actuator to its original position. The actuators are 
modeled with the prescribed motion using the General Moving Object (GMO) model, 
with the radial velocity shown in Figure 2 as a function of time. 
 

             
(a) (b) 
 

Figure 1. Geometry of the piezo-acoustic inkjet device: (a) 3-D geometry, 
(b) 2-D view in the central plane. Component 1: tube wall; components 2 
and 3: actuators. 
 

Figure 3 shows the calculated pressure distribution in the central plane at different times, 
illustrating the basic mechanism of the inkjet device. From time t=0.0 to 3.0×10-6 s, the 
tube is widened at its middle section due to the outward motion of the actuators. This 
initially forms a low pressure region which in turn generates two low pressure acoustic 
waves propagating toward the opposite ends of the tube. At about 1.25×10-5 s, both 
pressure waves reflect at their respective ends of the tube and move back towards the 
center in the form of high pressure waves. At about t=2.0×10-5 s, the two high pressure 
waves meet near the actuators. At the same time the actuators start moving back and 
reach their original positions at t=2.3×10-5 s, further raising the fluid pressure in this 
region and thus enhancing the intensity of the two waves. As one of them reaches the 
nozzle at t=3×10-5 s, the increased pressure in the wave pushes the ink out of the nozzle 
forming an ink droplet.  
  
Figure 4 shows the time variations of the ink pressure and deflection of the tube wall at 
x=0.022 cm, y=0.0 cm and z=0.5 cm. The first trough in Figure 4 (a) is caused by the 
initial low pressure wave, and the subsequent two peaks are caused by the two high 
pressure waves as they pass that location. Figure 4 (a) and (b) clearly show the response 
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of deflection to the changes in local pressure. At a negative relative pressure, a positive 
deflection (in the wall’s outer normal direction) occurs and the tube is narrowed. For a 
positive relative pressure the deflection is directed away from the axis, causing a 
widening of the cross-section. The pressure and the deflection curves satisfy Equation 
(13) exactly.  
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Figure 2. Actuator’s prescribed radial velocity as a function of time. 

 
                             
 

 
        
        0.0 s                         5×10-7 s                      3×10-6 s                     5.5×10-6 s        
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       8×10-6 s                    1×10-5 s                     1.25×10-5 s                 1.5×10-5 s 
 
 

 
 
        1.75×10-5 s                2×10-5 s                    2.2×10-5 s                  2.45×10-5 s  
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       2.75×10-5 s               3×10-5 s                    3.25×10-5 s               3.5×10-5 s     
 
 

 
 
      3.68×10-5 s               3.88×10-5 s               4.13×10-5 s                    4.38×10-5 s 
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      4.63×10-5 s                4.88×10-5 s                5.08×10-6 s                5.33×10-5 s 
 

 
 
      5.58×10-5 s                 5.83×10-5 s 
 

Figure 3. Pressure distribution (in dyne/cm2) at the center plane of the 
piezo-acoustic inkjet device. 
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(a) 

 

 
(b) 

 
Figure 4.  Pressure and deflection versus time (in s) at x=0.022 cm, y=0.0 
cm, and z=0.5 cm in CGS units: (a) fluid pressure (in dyne/cm2), (b) 
deflection (in cm).   
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5.2. Piezoelectric micro-pump 
 
Unlike a conventional pump, a piezoelectric micro-pump uses two diffusers to control 
fluid flow, instead of valves. One diffuser is directed from the inlet toward the pump 
chamber and the other from the pump chamber toward the outlet. A clamped membrane 
vibrates under the action of an attached piezoelectric disk (actuator), forcing the fluid to 
flow back and forth through the diffusers. Due to the different resistances of the diffuser 
elements to flow in different directions, a net flow from the inlet to the outlet of the pump 
is obtained over the time of the vibration period. 
 
Table 1. Pump parameters 
 

Membrane material Stainless steel 
Membrane diameter 10 mm 
Membrane thickness 0.15 mm 
Membrane density 7850 kg/m3 

Membrane Young’s modulus 19×1010 Pa 
Piezoelectric disc diameter 8 mm 
Piezoelectric disc thickness 0.25 mm 
Piezoelectric disc Young’s modulus 6.6×1010 Pa 
Pump chamber diameter 10 mm 
Pump chamber depth 0.2 mm 
Liquid  water 
Diffuser length 4.2 mm 
Diffuser average diameter 0.29 mm 
Diffuser minimum diameter  0.15 mm 
Inlet and outlet pipe diameter 1.8 mm 
Length of inlet and outlet pipes 100 mm 

 
 
Figure 5 shows the schematic of the micro-pump. The actuator force generated by the 
piezoelectric disc is a sinusoidal function of time. The parameters of the pump are listed 
in Table 1 (Ullmann and Fono, 2002). Since the piezoelectric disc and the membrane are 
glued together, the effective Young’s modulus of the membrane is estimated to be 
13.0×1010 Pa (Ullmann and Fono, 2002). The fluid is water. Numerical simulations were 
carried out for a series of frequencies of the sinusoidal actuator force. The actuator force 
has an amplitude of 1.0 N and is uniformly distributed over the circular contact area 8 
mm in diameter. Three computational mesh blocks are employed. A fine mesh block 
(534,600 cells) covers the volume from the inlet to the outlet of the pump, including the 
pump chamber, the diffusers and the inlet and outlet chambers of the pump. Two coarse 
mesh blocks covers the inlet and outlet pipes. The total number of mesh cells is 566,060. 
Static fixed-pressure boundary conditions are used at the inlet and outlet of the 
computational domain, with equal values of the pressure.  
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Figure 5. Schematic of the piezoelectric pump (inlet and outlet pipes are 
not shown). 
 

Figure 6 shows the deflection of the membrane center versus time at 400 Hz frequency of 
the actuator force oscillations. It includes the effects of both the actuator force and the 
hydraulic pressure force. Positive deflection is in the +z direction. Figure 7 shows the 
distribution of deflection over the membrane’s surface at two time instances, with the 
membrane being the circular region at the center of the figure. Figure 8 shows the 3D 
pressure distribution in the fluid corresponding to the deflections in Figure 7. The 
pressure in the chamber is high in Figure 8 (a) and low in Figure 8 (b) because fluid is in 
compression and expansion at these respective time instances. 
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Figure 9 shows the time variation of the volume flow rate through the pump at the 
actuator force frequency of 400 Hz. Water flows in both directions, but the time-averaged 
net flow rate is positive, namely, water is pumped from its inlet to outlet. Figure 10 
compares the calculated and measured net volume flow rates at different frequencies of 
the actuator force. It is found that the agreement between the calculated and measured 
results is reasonably good, especially between their peak values. However, the calculated 
natural frequency of the pump, i.e., the frequency corresponding to the highest flow rate, 
is about 125 Hz larger than in the measurement. This may be due to the inaccurate pump 
geometry used in simulation. Some key parameters of the experimental setup in (Ullmann 
and Fono, 2002) are unclear, such as the exact size and shape of the diffusers and the 
lengths of the inlet and outlet pipes. Estimates had to be made for those parameters for 
the simulation. Another reason for the discrepancies may be the insufficient accuracy of 
the estimation of Young’s modulus for the membrane-actuator assembly.  

 
 
 

 
Figure 6. Deflection (units are meters) of the membrane center versus time (units 
are seconds) at 400 Hz vibration frequency. 
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(a)   t=0.312 s 

(b)   t=0.316 s 
 

Figure 7. Deflection distribution (units are meters) of the membrane at 
400 Hz vibration frequency. The circular region in the center of the figure 
is the membrane.  
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(a) t=0.312 s 
 

 
 

(b)  t=0.316 s 
 

Figure 8. Pressure distribution (units are Pa) at 400 Hz vibration 
frequency (the inlet and outlet pipes are not shown): (a) fluid is in 
compression near the membrane, (b) fluid is in expansion near the 
membrane.  
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Figure 9. Volume flow rate of the pump (units are m3/s) versus time (units 
are seconds).  
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Figure 10. The net volume flow rate of the pump versus the frequency of 
the actuator force. 
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6. Conclusions 
 
A new elastic membrane and wall deformation model, based on the small-deformation 
assumption, has been developed and added to FLOW-3D. It can simulate deformation of 
an elastic membrane in response to the ambient hydraulic pressure and actuator forces. 
Fluid flow and membrane deformation are solved in a coupled fashion. The elastic 
membrane can be a rectangular or circular plate with its edge either simply supported or 
clamped. An actuator is assumed to be centered on the membrane and have a contact area 
the same shape as that of the membrane. The normal force exerted by the actuator on the 
membrane – the actuator force, is a user-prescribed force and can be given as a sinusoidal 
or a piecewise linear function of time. It can be concentrated on the membrane center or 
uniformly distributed over the contact area. The model also simulates elastic 
deformations of walls coupled with the fluid flow. An elastic wall is a solid geometry 
component of arbitrary shape, and its deflection at any point on the surface is in the 
surface normal and proportional to fluid pressure.  
 
The model allows for multiple elastic wall and membrane components with independent 
properties. The model is compatible with most other models, e.g., heat transfer. For 
limitations of the model, the elastic membrane or wall components cannot be porous or 
moving. If a moving object collides with a membrane or an elastic wall, the latter is 
treated as a non-moving rigid object in the collision simulation.  
 
The capabilities of the model are demonstrated by simulations of flow in a piezoelectric 
valveless pump and the inkjet formation for a piezo-acoustic inkjet device. Mechanisms 
of these devices are successfully captured. A good agreement between the computational 
and experimental results is obtained for the piezoelectric valveless pump case. 
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Appendix A. Analytical solutions of membrane deflection 
 
 
A.1. Rectangular membrane with simply supported edge 
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2. Centrally loaded 
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3. Partially loaded 

 
The rectangular loaded area has the extensions af and bf in x and y directions. The 
deflection distribution is obtained as 
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A.2. Rectangular membrane with clamped edge 
 

1. Uniformly loaded 
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where i=1,3,5,… 
 

3. Partially loaded 
 
The rectangular loaded area has extensions af  and bf  in x and y directions. Using 
superposition method, the deflection distribution is obtained as 
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The second equation is similar to the first equation with Ei replaced by Fi, Fm replaced by 
Em, a exchanged with b, and u exchanged with v and all the expressions for α′ , Ai, Bi, A’i, 
B’i, C’i, D’i, ai, and iγ . Ei, and Fi .  
 
A.3. Circular membrane with simply supported edge  
 

1. Uniformly loaded 
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where a is radius of the membrane, and r is distance from membrane’s center. 
 

2. Centrally loaded 
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3. Partially loaded 
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where Mb is the bending moment per unit length at br = , 
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where  is the deflection at  and can be obtained from the deflection expression in 
the unloaded region.  

bw br =

 
A.4. Circular membrane with clamped edge  
 

1. Uniformly loaded 
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2. Centrally loaded 
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3. Partially loaded 

 
Assume force F is uniformly loaded in region br < . Using the superposition method, the 
deflection is equal to that for a membrane with simply supported edge plus that due to the 
bending moment at the clamped edge.  In the unloaded portion ( )bra ≤≤ , 
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Ma is the bending moment per unit length at ar = , 
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where  is the deflection at  for bw br = simply supported edge and can be obtained from 
the deflection expression in the unloaded region for simply supported edge.  
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